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Abstract
The importance of multidimensional index structures to numerous
emerging database applications is well established. However, before
these index structures can be supported as access methods (AMs)
in a “commercial-strength” database management system (DBMS),
efficient techniques to provide transactional access to data via the
index structure must be developed. Concurrent accesses to data via
index structures introduce the problem of protecting ranges specified
in the retrieval from phantom insertions and deletions (thephantom
problem). This paper presents a dynamic granular locking approach
to phantom protection in Generalized Search Trees (GiSTs), an index
structure supporting an extensible set of queries and data types. The
granular locking technique offers a high degree of concurrency and
has a low lock overhead. Our experiments show that the granular
locking technique (1) scales well under various system loads and
(2) similar to the B-tree case, provides a significantly more efficient
implementation compared to predicate locking for multidimensional
AMs as well. Since a wide variety of multidimensional index structures
can be implemented using GiST, the developed algorithms provide a
general solution to concurrency control in multidimensional AMs. To
the best of our knowledge, this paper provides the first such solution
based on granular locking.

1 Introduction
Database systems are being increasingly deployed to support
emerging applications such as computer-aided design (CAD),
geographical information systems (GIS), multimedia content-
based retrieval systems, time-series databases, medical/health
care applications, spatio-temporal databases etc. To support
these applications efficiently on top of a DBMS, database
systems must allow application developers to (1) define their
own data types and operations on those data types, and (2)
define their own indexing mechanisms on the stored data
which the database query optimizer can exploit to access the
data efficiently. The Object Relational DBMS (ORDBMS)/
Universal Server (US) technology addresses the first problem
effectively [21]. But the ability to allow application developers
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to easily define their own access methods (AMs) still remains an
elusive goal.

TheGeneralized Search Tree(GiST) [9] addresses the above
problem. GiST is an index structure that is extensible “both” in
the data types it can index and in the queries it can support. It
is like a “template” – the application developer can implement
her own AM using GiST by simply registering a few extension
methods with the DBMS. GiST solves two problems:
� Over the last few years, several multidimensional data

structures have been developed for specific application
domains. Implementing these data structures from scratch
every time requires a significant coding effort. GiST can be
adapted to work like these data structures, a much easier task
than implementing the tree package from scratch.

� Since GiST is extensible, if it is supported in a DBMS, the
DBMS can allow application developers to define their own
AM, a task that was not possible before.

Although GiST considerably reduces the effort of integrating
new AMs in DBMSs, before it can be supported in a “commer-
cial strength” DBMS, efficient techniques to support concurrent
access to data via the GiST must be developed. Developing con-
currency control (CC) techniques for GiST have several impor-
tant benefits. (1) Since a wide variety of index structures can be
implemented using GiST, developing CC techniques in the con-
text of GiST would solve the CC problem for multidimensional
index structures in general. (2) Experience with B-trees has
shown that the implementation of CC protocols requires writing
complex code and accounts for a major fraction of the effort for
the AM implementation [8]. Developing the protocols for GiST
is particularly beneficial since it would need writing the code
only onceand would allow concurrent access to the database
via any index structure implemented in the DBMS using GiST,
thus avoiding the need to write the code for each index structure
separately.

Concurrent access to data via a general index structure
introduces two independent concurrency control problems:

� Preserving consistency of the data structurein presence of
concurrent insertions, deletions and updates.

� Protecting search regions from phantoms

This paper addresses the problem of phantom protection in
GiSTs. In our previous research, we had studied a granular
locking (GL) solution for phantom protection in R-trees [4].
We refer to it as theGL/R-treeprotocol. Due to fundamental
differences between R-tree and GiST in the notion of a search
key, the approach developed for R-trees is not a feasible
solution for GiST. Specifically, the GL/R-tree protocol needs
several modifications for making it applicable to GiSTs and
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Figure 1: A GiST for a key set comprising of rectangles in 2 dimensional space.O11 is a new object being inserted in nodeN5. R is
a search region. PredicatesP1 throughP6 are the BPs of the nodesN2 throughN7 respectively.

the modified algorithms, when applied to GiSTs, impose a
significant overhead, both in terms of disk I/O as well as
computational cost, on the tree operations. To overcome
this problem, we develop a new granular locking approach
for phantom protection in GiSTs in this paper. We refer to
it as theGL/GiST protocol. The GL/GiST protocol differs
from the GL/R-tree protocol in its strategy to partition the
predicate space and hence defines a new set of lockable
resource granules. Based on the set of granules defined, lock
protocols are developed for the various operations on GiSTs.
For an R-tree implemented using GiST, GL/GiST protocol
provides similar performance as the GL/R-tree protocol. On
the other hand, for index structures where the search keys
do not satisfy the“containment hierarchy” constraint, the
GL/GiST protocol performs significantly better than the GL/R-
tree protocol. Examples of such index structures include
distance-based (centroid-radius based) index structures (e.g.,
M-tree, SS-tree). In summary, GL/GiST provides ageneral
solutionto concurrency control in multidimensional AMs rather
than a specific solution for a particular index structure (e.g.,
GL/R-tree), without any compromise in performance.

The problem of phantom protection in GiSTs has previously
been addressed in [10] where the authors develop a solution
based on predicate locking (PL). As discussed in [8], although
predicate locking offers potentially higher concurrency, typi-
cally granular locking ispreferredsince the lock overhead of
predicate locking is much higher compared to that of granu-
lar locking. The reason is while granular locks can be set and
cleared as efficiently as object locks (� 200 RISC instructions),
setting of a predicate lock requires checking for predicate sat-
isfiability against the predicates of all concurrently executing
transactions. For this reason, all existing commercial DBMSs
implement granular locking in preference to the predicate based
approach. Our experiments on various “real” multidimensional
data sets show that (1) GL/GiST scales well under various sys-
tem loads and (2) Similar to the B-tree case, GL provides a
significantly more efficient implementation compared to PL for
multidimensional AMs as well.

The rest of the paper is developed as follows. Section 2
reviews the preliminaries. Section 3 describes the space
partitioning strategy for GiSTs and discusses the difficulty in
applying the R-tree approach to GiSTs. Section 4 presents the
dynamic granular locking approach to phantom protection in

GiSTs. The experimental results are presented in Section 5.
Finally, Section 6 offers the conclusions and future work.

2 Preliminaries
In this section, we first review the basic GiST structure. Next
we describe the phantom problem, its solutions for B-trees and
why they cannot be applied to multidimensional data structures.
Finally, we state the desiderata of a granular locking solution
to the phantom problem in multidimensional index structures
followed by the terminology used in presenting the algorithms.

Generalized Search Trees GiST is a height balanced multi-
way tree. Each tree node contains a number of node entries,
E = hp; ptri, whereE:p is a predicate that describes the sub-
tree pointed byE:ptr. If N is the node pointed byE:ptr, E:p
is defined to be the bounding predicate (BP) ofN , denoted by
BP (N ). TheBP of the root node is the entire key spaceS.
Figure 1 shows a GiST for a key space comprising of 2-d rect-
angles.

A key in GiST can be any arbitrary predicate. The application
developer can implement her own AM by specifying the key
structure via a key class. The design of the key class involves
providing a set of six extension methods which are used to
implement the standardsearch, insertanddeleteoperations over
the AM. A more detailed description can be found in [9].

Serializability Concepts and the Phantom Problem Trans-
actions, locking and serializability concepts are well docu-
mented in the literature [17, 18, 8]. The phantom problem
is defined as follows (from the ANSI/ISO SQL-92 specifica-
tions [12, 2]): Transaction T1 reads a set of data items satisfy-
ing some<search condition> . Transaction T2 then cre-
ates data items that satisfy T1’s<search condition> and
commits. If T1 then repeats its scan with the same<search
condition> , it gets a set of data items (known as “phan-
toms”) different from the first read. Phantoms must be prevented
to guarantee serializable execution. Object level lockingdoes
not prevent phantoms since even if all objects currently in the
database that satisfy the search predicate are locked, concurrent
insertions into the search range cannot be prevented. These in-
sertions may be a result of insertion of new objects, updates to



LOCK MODE           PURPOSE

S Shared Access

X Exclusive Access

IX Intention to set shared or
exclusive locks at finer
granularity

IS Intention to set shared 
locks at finer granularity

SIX A course granularity shared 
lock with intention to set 
finer-granularity exclusive
locks (union of S and IX)

Lock Mode IS IX S SIX

IS

IX

S

SIX

X

X

Table 1: Lock mode compatibility matrix for granular locks.
The purpose of the various lock modes are shown alongside.

existing objects or rolling-back deletions made by other concur-
rent transactions.

Approaches to Phantom Protection There are two general
strategies to solve the phantom problem, namelypredicate
locking and its engineering approximation,granular locking.
In predicate locking, transactions acquire locks on predicates
rather than individual objects. Although predicate locking
is a complete solution to the phantom problem, the cost of
setting and clearing predicate locks can be high since (1) the
predicates can be complex and hence checking for predicate
satisfiability can be costly and (2) even if predicate satisfiability
can be checked in constant time, the complexity of acquiring
a predicate lock is proportional in the number of concurrent
transactions which is an order of magnitude costlier compared
to acquiring object locks that can be set and released in constant
time [8]. In contrast, in granular locking, the predicate space is
divided into a set of lockable resource granules. Transactions
acquire locks on granules instead of on predicates. The locking
protocol guarantees that if two transactions request conflicting
mode locks on predicatesp andp0 such thatp ^ p0 is satisfiable,
then the two transactions will request conflicting locks on at
least one granule in common. Granular locks can be set and
released as efficiently as object locks. For this reasons, all
existing commercial DBMSs use granular locking in preference
to predicate locking. A more detailed comparison between the
two approaches can be found in [8].

An example of the granular locking approach is themulti-
granularity locking protocol(MGL) [11]. MGL exploits addi-
tional lock modes calledintentionmode locks which represent
the intention to set locks at finer granularity (see Table 1). Ap-
plication of MGL to the key space associated with a B-tree is
referred to askey range locking(KRL) [11, 13]. KRL cannot be
applied for phantom protection in multidimensional data struc-
tures since it relies on the total order over the underlying ob-
jects based on their key values which does not exist for multidi-
mensional data. Imposing an artificial total order (say a Z-order
[16]) over multidimensional data to adapt KRL would result in
a scheme with low concurrency and high lock overhead since
protecting a multidimensional region query from phantom in-
sertions and deletions will require accessing and locking objects
which may not be in the region specified by the query (since
an object will be accessed as long as it is within theupper and
the lower bounds in the regionaccording to the superimposed
total order). It would severely limit the usefulness of the mul-
tidimensional AM, essentially reducing it to a 1-d AM with the
dimension being the total order.

Desiderata of the Solution Since KRL cannot be used in
multidimensional index structures, new techniques need to be
devised to prevent phantoms in such data structures. The
principal challenges in developing a solution based on granular
locking are:
� Defining a set of lockable resource granules1 over the

multidimensional key space such that they (1) dynamically
adapt to key distribution (2) fully cover the entire embedded
space and (3) are fine enough to afford high concurrency.
The importance of these factors in the choice of granules has
been discussed in [8]. The lock granules (i.e. key ranges) in
KRL satisfy these 3 criteria.

� Easy mapping of a given predicate onto a set of granulesthat
needs to be locked to scan the predicate. Subsequently, the
granular locks can be set or cleared as efficiently as object
locks using a standard lock manager (LM).

� Ensuring low lock overheadfor each operation.
� Handling overlap among granuleseffectively. This problem

does not arise in KRL since the key ranges are always mutu-
ally disjoint. In multidimensional key space partitioning, the
set of granules defined may be, in GiST terminology, “mutu-
ally consistent”. For example, there may be spatial overlap
among R-tree granules. This complicates the locking proto-
col since a lock on a granule may not provide an “exclusive
coverage” on the entire space covered by the granule. For
correctness, the granular locking protocols must guarantee
that any two conflicting operations will request conflicting
locks on at least one granule in common. This implies that
at least one of the conflicting operations must acquire locks
on all granules thatoverlapwith its predicate while the other
must acquire conflicting locks on enough granules to fully
cover its predicate [4]. This leads to two alternative strate-
gies:
� Overlap-for-Search and Cover-for-Insert Strategy (OSCI)

in which the searchers acquire shared mode locks on all
granules consistent with its search predicate whereas the
inserters, deleters and updators acquire IX locks on a
minimal set of granules sufficient to fully cover the object
being inserted, deleted or updated.

� Cover-for-Search and Overlap-for-Insert Strategy (CSOI)
in which the searchers acquire shared mode locks on a
minimal set of granules sufficient to fully cover its search
predicate whereas the inserters, deleters and updators
acquire IX locks on all granules consistent with the object
being inserted, deleted or updated.

While the former strategy favors the insert and delete
operations by requiring them to do minimal tree traversal
and disfavors the search operation by requiring them to
traverse all consistent paths, the latter strategy does exactly
the reverse. Intermediate strategies are also possible. For
GL/GiST, we choose the OSCI strategy in preference to the
rest. The OSCI strategy effectively does not imposeany
additional overhead on any operation as far as tree traversal
is concerned since searchers in GiST anyway follow all
consistent paths. The CSOI strategy may be better for index
structures where inserters follow all overlapping paths and
searchers follow only enough paths to cover its predicate.
The R+-tree is an example of such an index structure
[19]. We assume that the OSCI strategy is followed for all

1In this paper, we use the term “granules” to mean lock units – resources that
are locked to insure isolation and not in the sense of granules in “granule graph”
of MGL [8]. This is discussed in further detail in Section 4.1.



discussions in the rest of the paper.

Terminology In developing the algorithms, we assume, as
in [11], that a transaction may request the following types
of operations on GiST: Search, Insert, Delete, ReadSingle,
UpdateSingle and UpdateScan. In presenting the solution to
the phantom problem, we describe the lock requirements of
each of these and present the algorithms used to acquire the
necessary locks. The lock protocols assumes the presence of
a standard LM which supports all the MGL locks modes (as
shown in Table 1) as well as conditional and unconditional
lock options [14]. Furthermore, locks can be held for different
durations, namely, instant, short and commit durations [14].
While describing the lock requirements of various operations for
phantom protection, we assume the presence of some protocol
for preserving the physical consistency of the tree structure in
presence of concurrent operations. The lock protocol presented
in this paper guarantees phantom protection independent of the
specific algorithm used to preserve tree consistency. In our
implementation, we have combined the GL/GiST protocol with
the latching protocol proposed in [10]. We do not describe the
combined algorithms in this paper due to space limitations but
can be found in the longer version of this paper [5].

3 Why the R-tree protocol cannot be applied
to GiSTs?

The most obvious solution to the phantom problem in GiSTs
is to treat GiSTs as extensible R-trees and apply the GL/R-tree
protocol we developed in [4] to GiSTs. In this section, we argue
that GL/R-tree protocol is not a feasible solution for GiSTs.
We first briefly review the approach developed for phantom
protection in R-trees [4]. We do this for two main reasons: (1)
it builds the context for the solution developed for GiSTs and
(2) it enables us to illustrate why GL/R-tree cannot be applied
to GiSTs. Subsequently, we define the resource granules in
GiST. We conclude the section by discussing why GL/R-tree is
inapplicable to GiSTs.

3.1 The R-tree granular locking protocol

In GL/R-tree, we define the following two types of lockable
granules:

(1) A leaf granuleassociated with each leaf level indexnode
L of the R-tree. We denote it byTG(L) i.e. the tree granule
associated with the leaf nodeL. The bounding rectangle
(BR)associated withL defines the lock coverage ofTG(L).
(2) An external granuleassociated with eachnon-leaf node
N of the R-tree. We denote it byext(N ) i.e. the external
granule associated with the non-leaf nodeN . The lock
coverage ofext(N ) is defined to be the space covered by
the BR ofN which is not covered by the BRs of any of its
children.

The search operation acquires locks on all leaf granules and
external granules overlapping with the search predicate (referred
to as SP/R-tree).

To prevent insertion of objects into search ranges of uncom-
mitted searchers, we follow the OSCI policy. Although the plain
OSCI policy guarantees phantom protection when the opera-
tions do not change the granules, phantoms may arise when the
granule boundaries dynamically change due to insertions and

deletions. To prevent phantoms, inserters in GL/R-tree follows
the following protocol (referred to as IP/R-tree):

Let g be the granule corresponding to the leaf node in which
the insertion takes place (referred to as thetarget granule) and
O be the object being inserted. IP/R-tree handles the following
2 cases separately:
� Case 1 - Insertion does not causeg to grow: In this case, the

inserter acquires (1) a commit duration IX lock ong and (2)
a commit duration X lock onO.

� Case 2 - Insertion causesg to grow (to say,g0): In this case,
it acquires (1) a commit duration IX lock ong (2) a commit
duration X lock onO and (3) short duration IX locks onall
granules into which it grew i.e. all granules overlapping with
(g0� g). (3) ensures that there exists no old searchers which
could lose their lock coverage due to the growth ofg. Note
that acquiring the extra locks of (3) may cause the inserter to
perform additional disk accesses.

A detailed discussion of the lock requirements for other tree
operations and the protocols followed to acquire the locks can
be found in [4].

3.2 Space partitioning strategy for GiSTs
The first task in developing a granular locking solution to the
phantom problem is to develop a strategy to partition the key
space. Note that the BPs in GiST, unlike the BRs in R-tree,
cannotbe used to define the granules since the BPs, unlike
the BRs, arenot arranged in a“containment hierarchy” i.e.
given a nodeT , for any nodeN under (i.e. reachable from)
T , BP (N ) ! BP (T ) is not necessarily true. So, for a search
with predicateP , there might exist a leaf (or external) granule
that is consistent with the search predicateP undera non-leaf
nodeN whose BP is not consistent withP . For example, in
Figure 1, the search predicateR is not consistent withBP (N2)
(i.e.P1) but is consistent withTG(N5) (i.e.P4) whereN5 lies
underN2 in the tree. This means that to follow the OSCI policy
(i.e. get locks on all consistent granules), the searcher cannot
“prune” its search belowN2 as it would normally do. This is
impractical since the searcher would have to access extranodes
(and possibly extra disk accesses) for the purpose of getting
locks.

It is clear from the above discussion that we must define
granules such that their lock coverage satisfy the “containment
hierarchy” constraint even if the BPs do not. For that purpose,
we define agranule predicateassociated with every index node
of a GiST.

Definition 1(Granule Predicate): Let N be an index node
andP be the parent of N. Thegranule predicateof N , denoted
byGP (N ), is defined as:

GP (N ) = BP (N ) if N is the root (1)

= BP (N ) ^GP (P ) otherwise (2)

Note that GPs, unlike BPs, are guaranteed to satisfy the
“containment hierarchy” property.

Using GPs, we define the following two types of granules:

(1) A leaf granuleTG(L) associated with each leafnodeL
whose coverage is defined by GP(L). For example, in Figure
1, there are 4 leaf granules: TG(N4), TG(N5), TG(N6) and
TG(N7) with lock coverage s lock coverage sP1 ^ P3,
P1^ P4, P2^ P5 andP2 ^P6 respectively
(2) An external granule ext(N ) associated with
each non-leaf node N whose coverage defined as
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(GP (N )^: (
Wn

i=1GP (Qi))). whereQ1; Q2; :::Qn are the
children of N. For example, in Figure 1, there are 3 external
granules: ext(N1), ext(N2) and ext(N3) will have lock cov-
eragesS ^ :(P1_ P2), P1^:((P1 ^P3)_ (P1^ P4))
andP2^ :((P2^ P5) _ (P2^ P6)) respectively.

Apart from the fact that the granules obey “containment
hierarchy”, the above definition has another motivation. In
GiST, for any index nodeN , BP (N ) holds for each object in
the subtree rooted atN . For example, in Figure 1,P1 holds for
objectsO1; O2; O3; O4andO5 while bothP1 andP3 holds for
objectsO1, O2 andO3. This implies that if an insertion does
not change the BP of any node, it is guaranteed to be covered
by the BP of eachnode in the path from the root to the leaf in
which the object is being inserted. For example, in Figure 1, the
objectO11 (being inserted in nodeN5) is covered by bothP1
andP4. So the leaf granuleTG(N5) should have lock coverage
of P1^P4 since that is what the inserter needs for covering the
object. This is exactly the definition of GP.

Having defined the new set of granules, we next try to apply
GL/R-tree on GiST.

3.3 Problems in Applying GL/R-tree to GiSTs
Let us consider the GiST shown in Figure 2. There are 4
leaf granulesG1, G2, G3 and G4 corresponding to nodes
N4; N5; N6 andN7 with GPsP1 ^ P3, P1 ^ P4, P2 ^ P5
andP2 ^ P6 respectively. For simplicity, the partitioning of
the space has been so chosen that all the external granules are
empty.

Let ts be a transaction searching regionR1. Let tins be a new
transaction that arrives to insertR2 into N4. After the insertion,
tins updatesP1 from x � 2 to x � 3. This causests to lose
it lock coverage. GL/R-tree prevents this by requiringtins to
acquire locks on all granules which the target granuleG1 has
grown into. This is not sufficient for GiSTs since, unlike in R-
trees, the target granule isnot the only granule that can grow due
to an insertion. For example, in Figure 2, bothG1 andG2 grow
due to the insertion. Assuming that only the target granule can
grow can lead to phantoms. Under that assumption,tins would
request a short duration IX lock on onlyG3 since that is the only
granule into whichG1 has grown, get the lock and commit. Now
if tnewins arrives to insertR3 intoN2, it would get the IX lock on
G2 and proceed with insertion. Now ifts repeats its scan, it
would findR3 has arrived from nowhere. Growing of multiple
leaf granules can happen in GiSTs because the lock coverage
of the leaf granules, due to the definition of GP, depend of the
BPs of the parents. So if an inserter modifies a node, the lock
coverage of any granule under that node can possibly change.
This is not possible in GL/R-tree since the lock coverage of a

granule is independent of the BRs of its parent nodes.
To prevent phantoms, if the insertion changes any granule, it

must acquire the following locks:
Let HC-node (Highest Changed Node) denote the the highest
node in the insertion path path from root to leaf in which
insertion takes place) whose BP (hence GP) changes due to the
insertion. In Figure 2,N2 is theHC-node for the insertion of
R2. LetG0 be the new GP ofHC-node after the insertion (e.g.,
x � 3 is the new GP ofN2). Sinceany granule that grows
due to the insertion is fully covered byG0, short duration IX
locks onall granules consistent withG0 would ensure that no
searcher loses its lock. In Figure 2, since all the 4 leaf granules
are consistent with the predicatex � 3, tins would need to
acquire short duration IX locks onG2,G3 andG4 in addition to
the commit duration lock onG1 and X lock onR2. This would
preventtins(by the conflicting lock onG4) till ts commits, thus
preventing the phantom.

The above solution involves additional disk accesses to
acquire those extra locks. In our experiments, we found that the
number of disk accesses involved is significant and increases
exponentiallywith the level of theHC-node. as shown in
Figure 3. In general, theHC-node can be at any level of the
GiST: all levels are equally likely. For the above experiment,
performed on a 5-level GiST with fanout of about 100 and
containing 400,000 2-d point objects, an insertion that causes
a BP-change (about 6% of all insertions caused BP change)
may need upto 1000 additional diskaccesses to get all the
locks (when the HC-node is at height 3 i.e. 3 levels above the
leaf). This indicates that GL/R-tree can impose significant I/O
cost for index structures where BPs do not obey “containment
hierarchy” (e.g., distance-based index structures like M-tree).

Besides high cost, GL/R-tree has some other limitations
for GiSTs: (1) It requires checking consistency with external
granules during search, an extra task not performed by the
regular GiST algorithm. This check can be computationally
expensive in GiSTs. (2) It cannot allow an insertion or deletion
to take place at an arbitrary level of the tree, a situation that can
arise in GiSTs.

4 Phantom Protection in GiSTs
In this section, we present a dynamic granular locking approach
to phantom protection in GiST. In the following subsections,
we define the set of lockable resource granules for GiSTs and
present lock protocols for various operations on GiSTs.

4.1 Resource granules in GiSTs

In GL/GiST, we define two types of granules:



(1) Leaf granules: This is the same as the previous GP-
based definition of leaf granules. A leaf granuleTG(L)
is associated with each leafnodeL whose lock coverage is
defined by GP(L).
(2) Non-leaf granules: This is a new set of granules. A
non-leaf granuleTG(N ) is associated with eachnon-leaf
nodeN whose lock coverage, like leaf granules, is defined
by GP (N ). In Figure 1, there are 3 non-leaf granules
associated with the 3 non-leaf nodesN1, N2 andN3 with
GPsS (entire key space),P1 andP2 respectively.

For both types of granules, the page ids of the index nodes
are the resource ids used to lock the granules.

Thus, GL/GiST defines a different set of lock granules
compared to those in the GL/R-tree protocol developed in [4].
External granules are no longer used as lockable granules. Non-
leaf granules are used instead. There are several reasons for
this choice: (1) it allows us to develop protocols that imposes
absolutely no overhead (in terms of extra nodeaccesses) on
any tree operation (2) it causes almost no loss in concurrency
since all commit duration locks held on non-leaf granules are
sharedmode locks (3) it has no extra computational cost since
checking for consistency with non-leaf granules, unlike that with
external granules, does not involve any extra checking other
than what is performed anyway during the regular GiST search
algorithm and (4) it allows the protocols to work even when
insertions/deletions take place at arbitrary levels of the tree.

It is important to note that although non-leaf granules
are introduced as lockable units, the GiST/GL protocol is
completely different from and should not be confused with
MGL. First, in MGL, the granules are hierarchically arranged
to form a “granule graph” over which it follows the DAG
protocol. In a granule graph, eachnode represents or “covers” a
“logical” predicate. Since they are “logical”, operations cannot
dynamically change the predicate covered by any node in the
graph. On the other hand, in GL/GiST, eachnode in a GiST
represents a “physical” predicate: the GP of the node. Since
GP is “physical” (i.e. defined based on the structure of the
tree), operations (like insertions, deletions and updates) can
dynamically change their lock coverages which complicates
the protocol. Second, in MGL, a lock on a coarse (higher
level) granule grants a certain lock coverage on the finer (lower
level) granules under it. In GiST/GL, that is not the case:
the higher level (non-leaf) granules are introduced in order to
cover the entire embedded space and a lock ondoes notgrant
coverage on any granule under it. In summary, DAG locking
and GL/GiST arefundamentally differentprotocols and serve
different purposes. We believe that the idea of defining lock
granules associated with non-leaf nodes is novel and, to the best
of our knowledge, has been discussed before only in the context
of bulk insertions in B-trees as an open problem in [8].

4.2 Search
In this section, we describe the lock protocol followed by the
search operation in GiST. According to the OSCI policy, a
searcher with search predicateQ acquires commit duration S
mode locks on all granules consistent withQ. The concurrent
search algorithm is described is Table 2.

We refer to the above lock protocol as SP/GiST (Search
Protocol for GiST). SP/GiST is a straightforward protocol and
does not require any modification to the basic tree-navigation
algorithm of GiST. This gives rise to a possible discrepancy.
Like the regular GiST search algorithm, SP/GiST uses the BPs

Algorithm Search(R, q, t)
Input: GiST rooted at R, predicate q, transaction t
Output: All tuples that satisfy q
S1: If R is root, request an S mode unconditional

commit duration lock on R.
S2: If R is non-leaf, checkeach entryE on R to

determine whether Consistent(E,q). For each entry
that is consistent, request an S mode unconditional
commit duration lock on the nodeN referenced by
E:ptr and Search is invoked on the subtree rooted
atN .

S3: IfR is a leaf, check each entryE onR to determine
whether Consistent(E,q). If E is Consistent, it is a
qualifying entry that can be returned to the calling
process.

Table 2: Concurrent Search Algorithm

to do the “Consistency(E,q)” check during tree navigation. But
the granules in GiST are defined in terms of the GPs. To show
that SP/GiST is correct, we need to show that it guarantees that
a searcher acquires locks on all the necessary granules i.e. for
any index nodeT , if GP (T )^Q is satisfiable,thenthe searcher
acquires an S lock onTG(T ).

To prove it, let us assume thatP0; P1; :::; Pm are the nodes
in the path from the root toT whereP0 is the root andPm is
T . Since a searcher acquires a shared lock onTG(T ) iff it is
consistent with with the BPs of allPi; i = [1;m], we need to
prove that ifGP (T ) ^Q is satisfiable,Q is consistent with the
BP ofPi; 8i = [1;m]. In other words, we need to prove that

GP (T )^Q is satisfiable)
m̂

i=0

Consistent(BP (Pi); Q) (3)

Using the definition ofGP (T ),

GP (T ) ^Q is satisfiable,

 
m̂

i=1

BP (Pi)

!
^Qis satisfiable

(4)
Since^ is idempotent, 

m̂

i=1

BP (Pi)

!
^Q is satisfiable,

m̂

i=1

(BP (Pi)^Q)is satisfiable

(5)
Sincep ^ q is satisfiable) Consistent(p; q), so8i; i = [1;m]

(BP (Pi) ^Q) is satisfiable) Consistent(BP (Pi); Q) (6)

Since (A) B ^C ) D) ) (A ^ C ) C ^D),

m̂

i=1

(BP (Pi) ^Q) is satisfiable)
m̂

i=0

Consistent(BP (Pi); Q)

(7)
Equations (4) and (7) together implies (3).

4.3 Insertion
The locking protocol for an insert operation must guarantee:
� Full Coverage of the object being inserted till the time of

transaction commit/rollback: We say an objectO being
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Figure 4: Loss of lock coverage can cause phantoms.

inserted (deleted) is fully covered by a set of granulesG iff
O )

S
g2G g. An insertion (as well as a deletion or an

update) operation must acquire commit duration IX locks
on G such thatG fully coversO. Full coverage guarantees
that an insertion is permittedonly ifO does not conflict with
the predicate of any uncommitted searcherassumingthat
each searcher hold commit duration locks on all consistent
granules.

� Prevent Phantoms due to Loss of Lock Coverage:Since
insertions (as well deletions and updates) can dynamically
modify one or more granules which in turn can affect
the lock coverage of transactions holding locks on other
granules, full coverage isnotsufficient to prevent phantoms.
For example, the insertion of an objectO into a leaf node
L of a GiST may cause the granuleTG(L) to grow into
the search range of an old uncommitted searcher, resulting
in the searcher losing its lock. This loss of lock coverage
may cause future insertions, in spite of satisfying the full
coverage condition, giving rise to phantoms as illustrated
in Figure 4. The insertion lock protocol must prevent such
phantoms from arising.

To ensure full coverage and prevention of phantoms due to
loss of lock coverage, the following protocol, referred to as
IP/GiST (Insert Protocol for GiST), is used.

LetO be the object being inserted andg be the target granule.
We consider the following two cases:
� Case 1 - Insertion does not causeg to grow: In this case, the

inserter acquires (1) a commit duration IX lock ong and (2)
a commit duration X lock onO.

� Case 2 - Insertion causesg to grow: Let LU -node (Lowest
Unchanged Node) denote the lowest node in the insertion
path whose GP does not change due to the insertion. For
example, in Figure 2,N1 is theLU -node for the insertion
operation ofR2. The insertion acquires (1) a commit
duration IX lock ong (2) a commit duration X lock onO
and (3) ashort duration IX lock on TG(LU-node).2 For
example, in Figure 2,tins would need to acquire a short
duration IX lock onTG(N1) in addition to the IX lock on
TG(N4) and X lock onR2.

The concurrent insert algorithm is described in Table 3.
IP/GiST is a simple and efficient protocol since it, unlike the

IP/R-tree, does not imposeany I/O or computational overhead
on the insertion operation. As a result, IP/GiST is more
efficient that IP/R-tree even on R-trees. Second, unlike IP/R-
tree, IP/GiST works even if the target granule is a non-leaf
granule i.e. when insertion takes place at a higher level of the
tree.

2The short duration IX lock can be released immediately if the AdjustKeys
operation is performed right away i.e. in a top-down fashion rather than bottom-
up as is done in GiSTs. This would avoid holding the lock across I/O operations.

Algorithm Insert(R, E, l, t)
Input: GiST rooted at R, entry E=(p, ptr) (where p

is a predicate such that p holds for all tuples
reachable from ptr), level l, transaction t.

Output: New GiST resulting from insert of E at level l
Variables: root is global variable (const) pointing to the

root node of the GiST.L is a lock initialized to
NULL.

I1: If R is not at level l, check all entriesEi =
(pi; ptri) in R and evaluate Penalty(Ei,E) for
eachi. Let m be argmini (Penalty(Ei; E)).
If ((L == NULL) ^ (Union(E.p, Em:pm) 6=
Em:pm)), request a unconditional IX mode lock
L on R (for short duration). Insert is invoked
on the subtree rooted at the node referenced by
Em:ptrm.

I2: Otherwise (level of insertion reached), request
a commit duration unconditional IX lock onR
and a commit duration unconditional X lock on
E:ptr. If there is room for E on R, install E on
R. Otherwise invoke Split(root, R, E, t).

I3: AdjustKeys(root, R, t).
I4: If L 6= NULL, releaseL.

Table 3: Concurrent Insert Algorithm

Now we show that IP/GiST satisfy the above requirements
of correctness. First, we prove full coverage. In Case 1,g

fully coversO, so commit duration IX lock ong ensures full
coverage. In Case 2, at the start of the operation,g does not fully
coverO but TG(LU-node) does. So full coverage is provided
by the sequence of 2 locks: (1) the short duration IX lock on
TG(LU-node) from the beginning of the operation till the end of
the operation3 (2) the commit duration IX lock ong from the
end of the operation till the end of the transaction (sinceg has
already grown to accommodateO).

Next we show prevention of phantoms due to loss of lock
coverage. In Case 1, there can be no loss of lock coverage of any
searcher. In Case 2, the short duration IX lock on TG(LU-node)
guarantees that no searcher can lose it lock coverage. Let us first
consider a searcherts already executing when the insertertins
arrives to insertO. Let Q be the search predicate ofts. Let h
be a granule that grows toh0 due to the insertion ofO. ts can
lose its lockiff h ^ Q is not satisfiable buth0 ^ Q is satisfiable.
From the definition of LU-node,h0 ) TG(LU-node).(h0 ^Q)
is satisfiableand (h0 ) TG(LU-node)) imply (TG(LU-node)
^Q) is satisfiable which in turn impliesConsistent(TG(LU-
node), Q). This means thatts can lose it’s lock coverageiff
it has an S lock on TG(LU-node) (since searcher acquires S
locks on all consistent granules). Thus, the IX lock requirement
on TG(LU-node) prevents any searcher from losing its lock
coverage. The IX lock on TG(LU-node), being a short duration
lock, would prevent any loss of lock by even those searchers
that arrive during the operation. Any searcher that arrives after
the completion of the insertion operation cannot lose its lock
coverage due to the insertion.

3Note that this the best we can do since, at this point of time, TG(LU-node)
is thesmallestgranule in the insertion path thatfully coversO.



Operation Lock Requirements Other Actions
Insertion(no granule change
/no node split)

Commit dur. IX ong; Commit dur. X onO None

Insertion (granule change) Short dur. IX on TG(LU-node); IX ong; X onO None
Insert (node split) If T is leaf : Instant dur. SIX onTG(T ) before split; IX on

eitherTG(T ) or TG(TT ), whichever containsO after split
If T is non-leaf : Instant dur. SIX onTG(T );

Inherit S locks to
TG(TT ) if itself holding
S lock onTG(T )

Search S on all consistent leaf and non-leaf granules None
Delete (Logical) IX on g; X onO MarkO deleted; Remove

O from page
Delete (Deferred) If node is not empty: Short dur. IX on TG(HC-node); IX ong;

X onO.
If becomes empty: If T is leaf, Short dur. SIX on TG(T); If T
is non-leaf , Short dur. IX on TG(T)

Eliminate node if empty

ReadSingle S onO None
UpdateSingle If no indexed attribute changed: IX ong; X onO

Otherwise: DeleteO; Insert modifiedO
None

UpdateScan S on all consistent granules; For every individual object
updated, same requirement as UpdateSingle

None

Table 4: Lock requirements for various operations in the dynamic granular locking approach.g is the target granule for
insertion/deletion,O is the object being inserted/deleted/updated.

4.4 Node Split

We now consider the special case where the insertion by a
transactiont into an already full node causes the target granule
g to split into granulesg1 and g2. Insertions causing node
splits follow the IP/GiST except that it needs to acquire some
additional locks when it causes the splits.

If the insertion byt causesg to split, since the IX lock held by
t ong is lost after the split,t needs to acquire IX locks ong1 and
g2 to protect the inserted object. Sincet acquires an IX lock ong
before the insertion, no other transaction, besidest itself, can be
holding an S lock ong. If t itself holds an S lock ong, it needs
to inherit its S lock ong to g1 andg2. This is becauseg1 and
g2 are the only additional granules that may become consistent
with the search predicate oft due to the split.

Since before the split the inserter acquires an IX lock ong,
other inserters and deleters may also be holding IX locks on
g. Wheng splits, all transactions holding IX locks ong must
acquire IX locks ong1 andg2 after the split. This is sufficient as
all the insert and/or delete ranges (logical deletion) is guaranteed
to be protected by the IX locks ong1 andg2 since all objects ing
will be either ing1 org2. It may not possible fort to change lock
requests of other transactions using a standard lock manager.
The problem can be avoided if the inserter acquires a instant
duration SIX lock ong in case it causesg to split. After the
split, the inserter acquires a commit duration IX lock on either
g1 or g2, whichever containsO.

The splitting of the granule may propagate upwards causing
the non-leaf nodes to split. As in the case of leaf node split, the
transaction causing a non-leaf nodeN to split acquires a instant
duration SIX lock onTG(N ) to prevent any other transaction
losing its lock. If t itself was holding an S lock onTG(N ), it
needs to inherit its S lock on the two granules formed after split.

The node split operation can be allowed to be carried out
“asynchronously”. This requires maintaining the information
of an “outstanding split” in the node - the transaction can
subsequently commit while a separate transaction executes the

split operation later by checking the “outstanding split” flags.
The lock requirements remain the same as in the “synchronous”
case.

4.5 Deletion
Similar to insertion, to delete an objectO, the deleter requires
an IX lock on the region that coversO. However, unlike
insertion, (in which the granule where the object is inserted
grows and covers the inserted object), the granuleg from which
O is deleted may shrink due to the deletion and may not cover
O. To protect the delete region, the deleter would need a
commit durationIX lock on TG(LU-node) (here it is the LU-
node of the deletion of operation) since TG(LU-node) is the
smallest granule to fully coverO at the completion of the
deletion operation. This would result in low concurrency since
a large number of searchers may be unnecessarily prevented till
the deleter commits. For this reason, we do not consider this
approach any further. Instead, deletes are performed logically.
We present the lock needs of the logical and physical deletions
in the following subsections.

4.5.1 Logical Deletion
The logical deleter needs to acquire a commit duration IX lock
on only the leaf granuleg that contains the object and an X
lock on O itself. The IX lock ong is sufficient to coverO
since even if the GP ofg changes due to other insertions and
deletions (physical) sinceg would still coverO. Subsequently,
it removes the object from the page and marks it as deleted. If
the transaction aborts, the changes are undone, the delete mark
is removed and the locks are released. On the other hand, if it
commits, the physical deletion ofO from the GiST is executed
as a separate operation.

If the transaction requests deletion of an objectO that does
not exist, other transactions wishing to insert the same object
should be prevented as long as the deleter is active. For this
purpose, the deleter acquires S locks on all consistent granules
just like a search operation withO as the search predicate.



4.5.2 Deferred (Physical) Deletion
The deferred delete operation removes the logically deleted
object from the GiST and adjusts the BPs of the ancestors. To
physically delete an object from a granuleg, a short duration IX
lock ong is acquired to prevent other searchers having S locks
ong from losing their lock coverage. The IX lock is sufficient as
inserters and other deleters holding locks ong would not lose the
necessary lock coverage even afterg shrinks due to the physical
deletion. Deletion of an entry from the node may also result in
the node becoming empty in which case it is eliminated from the
GiST. Since a node is eliminated only when it becomes empty,
no transaction can lose its IX lock due to elimination ofg asg
does not cover any object. So the IX lock ong is sufficient even
if the deletion causes the elimination of the node.

In either case, since the change ofg may propagate upwards
causing BPs of the ancestor nodes to change, the non-leaf
granules associated with the ancestors may shrink. Since only
searchers hold locks on non-leaf granules (inserters request
only instant-duration locks), only searchers can lose their lock
coverage due to this shrinkage. Note that only the searchers
whose predicates are consistent with theHC-node (i.e. the
highest index node in the deletion path whose BP changes due
to the deletion) can lose lock coverage, possibly giving rise to
phantoms. The loss of lock coverage of the searchers can be
prevented by acquiring a short duration IX lock on TG(HC-
node). Note that for insertion, it was the TG(LU-node) on which
the short duration IX lock had to be acquired. The difference
comes from the fact that insertion causes granules to grow while
deletion causes them to shrink.

4.6 Other Operations
The locks needs for the other operations are:
� The ReadSingleoperation just acquires an S lock on the

object.
� The UpdateSingleoperation, if none of the attributes in-

dexed by GiST are changed, just needs an IX lock on the
granule containing the object and an X lock on the object.
Otherwise, it first executes a deletion operation of the object
to be updated followed by the insertion of the updated object
obeying the respective lock protocols.

� The UpdateScanoperation acquires S locks on all consis-
tent granules just like a Search operation. For every indi-
vidual objectO updated, it requires the same locks as an
UpdateSingle operation onO.

The lock requirements for the various operations is shown in the
Table 4.

5 Experimental Evaluation
We performed several experiments to (1) evaluate the perfor-
mance of the GL/GiST protocol under various degrees of sys-
tem loads and (2) compare it with other protocols in terms of
concurrency and lock overhead. In this section, we discuss our
implementation of the protocols followed by the performance
results.

5.1 Implementation
Implementation of the Protocols We implemented the com-
plete GL/GiST protocol as described in this paper. To evalu-
ate the performance of the GL/GiST protocol, we also imple-
mented the pure predicate locking (referred to as thePurePL
protocol) to serve as the baseline case. In PurePL, each search

Parameters Meaning
MPL multiprogramming level
Transaction
Size

the number of operations per transac-
tion

Write Proba-
bility

the fraction of operations in a trans-
action that are writes (i.e. inserts)

Query Size the average selectivity of a search
operation

External
Think Time

mean time between transactions

Restart Delay mean time after which an aborted
transaction is restarted

Table 5: Workload Parameters

operation checks its predicate against the objects of the in-
sert/delete/update operations of all currently executing transac-
tions. If there is any conflict, it blocks on that transaction by
requesting an S lock on that transaction ID, assuming that ev-
ery transaction acquires an X lock on its own ID when it starts
up. Otherwise it proceeds with the search. Similarly, each in-
sert/delete/update operation checks its object against the predi-
cates of the search operations of all currently executing transac-
tions and in case of a conflict, blocks on the conflicting transac-
tion.

Construction of GiST We conducted our experiments on two
different GiSTs constructed over the following two datasets:

� The 2-d dataset: is the 2-d point data set of the Sequoia
2000 benchmark [20]. It contains locations(easting and
northing values) of 62,556 California places extracted from
the US Geological Survey’s Geographic Names Information
System (GNIS)). The points are geographically distributed
over a 1046km by 1317km area.

� The 3-d dataset: is derived from the FOURIER dataset
[6]. The FOURIER dataset data set comprises of 1.2
million vectors of fourier coefficients produced by fourier
transformation of polygons. We constructed the 3-d dataset
by taking the first 3 fourier coefficients of each vector.

We set aside some points (by random choice) from the
above data files for insertion into the GiST during the run of
transactions. The searches to be executed during the run are
generated by randomly choosing the query anchor from the data
file and generating a bounding box by choosing a proper side
length needed to obtain desired search selectivity. The set-aside
points and the queries are stored in two separate files which are
used by the workload generator.

We created the GiSTs by bulkloading the remaining points.
The two GiSTs are described below:

� 2-d GiST:constructed on 56,655 2-d points with 2K page
size (fanout 102, 821 nodes). Since the size of the data set is
small, we use a comparatively small page size to make the
GiST of significant size.

� 3-d GiST:constructed on 480,471 3-d points with 8K page
size (fanout 292, 2360 nodes)

In both cases, we configured the GiST to behave as an R-tree by
specifying the extension methods appropriately.
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Workload Generator and the Lock Manager The workload
generator (WG) generates a workload based on the input param-
eters shown in Table 5. The WG assigns some search operations
(from the bounding box query file) and some insertion opera-
tions (from the set-aside point file) toeach transaction. Each
transaction executes as a separate thread. We use the Pthread li-
brary (Solaris 2.6 implementation) for creating and managing
the threads [15]. One thread only executes one transaction:
it is created at the beginning of the transaction and is termi-
nated when the latter commits. The WG maintains the MPL
at the specified value by using an array of flags (MPL num-
ber of them): when a thread finishes, it sets a flag. The main
WG thread constantly polls on this array and when it detects
the setting of a flag, it starts a new thread and assigns the next
transaction to it. The thread waits for some time (external think
time) and starts executing the transaction: it executes one oper-
ation after another on the GiST following the lock protocols. If
any lock request returns an error (due to a deadlock or a time-
out), the transaction aborts. If it aborts, it is re-executed within
the same thread after a certain restart delay (each transaction
remembers its constituent operations till it commits for possible
re-execution). Our implementation of the WG consists of 3 main
C++ classes (TransactionManager, Transaction and Operation).
The TransactionManager class also maintains the global statis-
tics of the run (e.g., throughput, conflict-ratio, number of locks
acquired, number of aborts etc.) which are used to measure the
performance of the various protocols. Although the other 4 sim-
ulation parameters are varied, we fix the external think time to
3 seconds and the restart delay to 3 seconds for all our experi-
ments. Also, for the two GiSTs, the buffer sizes are set such that

about 75% of the pages fit in memory.
For the lock manager (LM) implementation, we reused most

of the LM code of MiniRel system obtained from the University
of Maryland. The LM code closely follows the description in
[8].

All experiments were performed on a Sun Ultra Enterprise
3000 Server running Solaris 2.6 with two 167MHz CPU,
512MB of physical memory and several GB of secondary
storage.

5.2 Experimental Results

Evaluation of the GL/GiST protocol We conducted exper-
iments to evaluate the performance of the GL/GiST protocol
under various system loads. Performance is measured using
throughput i.e. the ratio of the total number of transactions that
completed during the period when the transactions ran at full
MPL (ignoring the starting phase and the dying phase when the
MPLs are lower) to the total duration of the full-MPL phase [1].
Figures 5 shows the throughput of GL/GiST and PurePL proto-
cols at various MPLs for the 2d dataset. Initially, the throughput
increases with the MPL as the system resources were underuti-
lized at low MPLs. For GL/GiST, the throughput reaches a peak
(� 14 tps) at an MPL of 50 while for PurePL, the peak (� 6
tps) is reached at an MPL of 60. Beyond that point, the through-
put starts decreasing as the system starts thrashing. Figures 6
shows the performance of the two protocols for the 3d dataset.
Like the 2-d dataset, the GL/GiST achieves significantly higher
throughput compared to PurePL.

We also varied the system load by tweaking the other parame-
ters like write probability, transaction size and size of search [1].
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eration (transaction size=10, write proba-
bility=0.2, query selectivity=0.1%)
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Figure 12: Lock Overhead of Insert Op-
eration (transaction size=10, write proba-
bility=0.2, query selectivity=0.1%)
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Figure 13: Throughput at various MPLs
for 5-d data (write probability=0.1, trans-
action size=10, query selectivity=0.1%)

These experiments were conducted on the 2-d dataset. Figure 7
shows the performance of the two protocols under various mixes
of read(search) and write(insert) operations. GL/GiST signifi-
cantly outperforms PurePL under all workloads. Figure 8 shows
the throughputs at various transaction sizes. Again, GL/GiST
mostly outperforms PurePL. At an MPL of 50, for transactions
with 20 or more operations, since a large portion of the GiST is
locked by some transaction or the other, GL/GiST starts thrash-
ing due to high lock contention leading to decrease in through-
put. Figure 9 shows the performance for various query sizes.
Once again, GL/GiST performs better than PL for all workloads.

Comparison to other techniques In this section, we compare
GL/GiST protocol with the predicate locking protocol presented
in [10]. We refer to the above protocol as the PL/GiST protocol.
In PL/GiST, a searcher attaches its search predicateQ to all the
index nodes whose BPs are consistent withQ. Subsequently,
the searcher acquires S locks on all objects consistent with
Q. An inserter checks the object to be inserted against all the
predicates attached to the node in which the insertion takes
place. If it conflicts with any of them, the inserter also attaches
its predicate to the node (to prevent starvation) and waits for
the conflicting transactions to commit. If the insertion causes
a BP of a nodeN to grow, the predicate attachments of the
parent ofN is checked with new BP ofN and are replicated
at N if necessary. The process is carried out top-down over
the entire path where node BP adjustments take place. Similar
predicate checking and replication is done between sibling
nodes during split propagation. The details of the protocol
can be found in [10]. A complete performance study would
require a full fledged implementation of the PL/GiST protocol
(including implementation of the Predicate Manager, augment
GiST with data structures to be able to attach/detach predicates
to tree nodes etc.). Due to the complexity of the this task,
we only compare the two protocols in terms of the degrees of
concurrency offered and their lock overheads. Again PurePL
is used to serve as the baseline case. All the experiments were
conducted on the 2-d dataset.

Figure 10 compares the concurrency offered by the GL/GiST
and the PL protocols. Concurrency is measured using conflict
ratio i.e. the average number of times some transaction blocked
on a lock request per committed transaction [1]. Lower the
conflict ratio, higher the concurrency. Both PL/GiST and
PurePL protocols offer the maximum permissible concurrency
since transactions are blocked only when they truly conflict.

On the other hand, GL/GiST offers lower concurrency due to
“false conflicts” i.e. a situation where although the predicates do
not conflict with each other, they end up requesting conflicting
locks on the same granule (e.g., in R-trees, a search predicate
and an object being inserted do not overlap with each other but
they overlap with the BR of the same leaf node). More the
number of false conflicts, higher the loss of concurrency. Figure
10 shows that false conflicts do not cause a significant loss of
concurrency in GL/GiST compared to PL. This is an outcome
of the “fineness” of the chosen granules.

Figure 11 and 12 shows the lock overheads imposed by the
GL/GiST, PL/GiST and PurePL protocols for the search and
insert operations respectively. The lock overhead is measured
by the average number of locks acquired or the average number
of predicate checks performed, as the case may be, measured on
the same scale. Although the two costs (i.e. acquiring a lock
and performing a predicate check) are within the same order
of magnitude (between 50-200 RISC instructions) for 2d data,
the costs would differ for higher dimensional data (predicate
checking becomes costlier while the cost of acquiring a lock
remains the same). While the lock overhead of predicate locking
increases linearly with MPL, that of GL is independent of MPL.
The figures show that for both search and insert operations,
GL/GiST imposes considerably lower lock overhead compared
to PL protocols.

To study the performance of GL at higher dimensionalities,
we also conducted experiments on 5-d data. The 5-d dataset
is derived from the FOURIER dataset and is constructed by
taking the first 5 fourier coefficients of each vector. We built
the GiST on 480,471 points of the 5-d dataset with 8K page
size(fanout 136, 5186 nodes). The buffer size was set to about
10% of the size of the GiST. Figure 13 shows the performance
the two approaches at various MPLs for 5-d data. Like 2-d and
3-d datasets, granular locking outperforms predicate locking for
5-d data as well.

In summary, there is a tradeoff between GL and PL –
while GL enjoys lower lock overhead, it has lower concurrency
compared to PL. Our experiments confirm that similar to granule
based protocols for 1-d datasets, the GL protocol performs
significantly better than PL for multidimensional datasets as
well.

6 Conclusions and Future Work
Numerous emerging applications (e.g., GIS, multimedia, CAD)
need support of multidimensional AMs in DBMSs. The



Generalized Search Tree (GiST) is an important step to meet that
need. GiST, being an extensible index structure, when supported
in a DBMS, will allow application developers to define their own
AMs by supplying a set of extension methods. However, before
GiSTs can be supported by any commercial strength DBMSs,
efficient techniques to support concurrentaccess to data via
the GiST must be developed. Concurrent access to data via a
general index structure introduces two independent concurrency
control problems. First, techniques must be developed to ensure
the consistency of the data structure in presence of concurrent
insertions, deletions and updates. Second, mechanisms to
protect search regions from phantom insertions and deletions
must be developed. Developing such mechanisms to guarantee
transactional access to data via multidimensional data structures
has been identified as one of the key challenges to transaction
management in future database systems [8].

This paper presents a dynamic granular locking approach to
phantom protection in GiSTs. The paper builds on our previ-
ous work on a dynamic granular locking strategy for R-trees
[4]. Due to some fundamental differences between R-tree and
GiST in the notion of a search key, the algorithms developed
for R-trees do not provide a feasible solution for phantom pro-
tection in GiST. Motivated by the limitations of the previous
approach in the context of GiSTs, we develop a new granular
locking approach suited for concurrency control in GiSTs. The
developed protocols provide a high degree of concurrency and
have low lock overhead. Our experiments have shown that the
granular locking technique (1) scales well under various system
loads and (2) significantly outperforms predicate locking for low
to medium dimensional datasets (2d, 3d and 5d). While most
applications that involve dynamic datasets and require highly
concurrent accesses to the data deal with low to medium di-
mensional spaces,4 it is nevertheless interesting to explore ap-
proaches that provide good performance for high dimensional
datasets as well. Although the granular locking proposed in this
paper provides almost as high concurrency as the predicate lock-
ing approach for low to medium dimensionalities (see Figure
10), the loss of concurrency increases with the increase in di-
mensionality. The reason is that at high dimensionalities, the
data space gets increasingly sparse (a phenomenon commonly
known as the “dimensionality curse” [3]), resulting in coarser
leaf granules which causes more “false conflicts” and hence a
higher loss in concurrency. While at low to medium dimension-
alities the efficiency of granular locking far outweighs the loss of
concurrency resulting in better performance compared to pred-
icate locking, it may not be the case at high dimensionalities.
This is evidenced by the fact that for 5-d data, though granular
locking still outperforms predicate locking, the performance gap
between them is less compared to the 2-d and 3-d datasets. A
simple approach to improve the concurrency offered by granu-
lar locking is to define finer granules. The benefit of such an
approach is not clear since while the finer granules will improve
concurrency, it will also increase the lock overhead of each op-
eration. A hybrid strategy between the granular and predicate
locking techniques may be a more suitable solution for high di-
mensional datasets. We intend to explore such a solution in the
future.

4For example, GIS and CAD systems deals with spatial data which is either
2-d or 3-d. Spatio-temporal applications (e.g., management of moving objects)
deals with 3-d or 4-d data. Multimedia retrieval systems like QBIC index images
using 3-d feature vectors [7].
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